Background and Aim

- Supply of healthcare resources is limited
- Demand for healthcare is high and potentially rising
- Decisions need to be made about how to treat specific conditions and which conditions to prioritise
- Expanding the role of allied health professionals is one solution to the challenge of increasing pressures on budgets
- Some concerns over such expanded roles
- Radiographer reporting of CXRs seen as a potential alternative to radiologist reporting
- What are the cost implications of radiographer reporting of CXRs for suspected lung cancer?
- How cost-effective is radiographer reporting?

Methods

- Study funded by Society of Radiographers and conducted by MSc student from City University
- Evaluation options:
 - Randomised trial
 - Observational study
 - Case note review
 - Simulation model
- Advantages of models:
 - Results can be produced quickly
 - Models can be adapted to aid generalisability
 - Allows a focus on certain key parameters of interest
- Disadvantages of models:
 - Models are by definition an abstraction from reality
 - Data are not always available

Key Assumptions

- Time taken to report chest X-rays is 2 minutes for both radiographers and radiologists
- False negatives present at A&E and at a later date at which point disease has advanced a stage (for patients at stage I to III)
- Sensitivity and specificity of radiographer reporting of chest X-ray and radiologist reporting of both chest X-ray and CT-scan is independent of disease stage or other patient characteristics such as age.
- Treatment costs in the year following diagnosis are maintained for the subsequent four years or until death
- QOL in the year following diagnosis is maintained for the subsequent four years or until death
- There is no QOL impact arising from false positive reporting
- Findings for non-small cell lung cancer are generalisable to other lung cancers

Results

- At initial presentation there would be:
 - 95.8 cancer cases identified through radiographer reporting
 - 85.5 cancer cases identified through radiologist reporting
- Total reporting costs:
 - Radiographer £57,302
 - Radiologist £65,768
- Total costs including treatment:
 - Radiographer £2,576,399
 - Radiologist £2,560,795
 - Difference = £15,604
- Total QALYs:
 - Radiographer 196.09
 - Radiologist 192.4
 - Difference = 3.69

Conclusions

- Radiographer reporting of CXRs appears to be a viable alternative to radiologist reporting
- Costs will rise if accuracy is greater
- Cost per QALY below NICE threshold (£20,000)
- Caveats
 - Simple model
 - Data from limited sources
 - Extra training costs not considered
 - Earlier diagnosis not assessed
 - More refined model and robust data required

Contact

Dr. Mamta Kumari Bajre
Email: mamta.bajre@ci.city.ac.uk
Phone: 07459566426

Table 1. Estimating of reporting accuracy

<table>
<thead>
<tr>
<th>Parameter</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity - Radiologist reporting CXR</td>
<td>69.7</td>
</tr>
<tr>
<td>Specificity - Radiologist reporting CXR</td>
<td>80.9</td>
</tr>
<tr>
<td>Sensitivity - Radiographer reporting CXR</td>
<td>78.1</td>
</tr>
<tr>
<td>Specificity - Radiographer reporting CXR</td>
<td>85.2</td>
</tr>
<tr>
<td>Sensitivity - Radiologist reporting CT Scan</td>
<td>94.4</td>
</tr>
<tr>
<td>Specificity - Radiologist reporting CT Scan</td>
<td>72.6</td>
</tr>
</tbody>
</table>

Activity £

<table>
<thead>
<tr>
<th>Activity</th>
<th>£</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chest X-ray</td>
<td>27</td>
</tr>
<tr>
<td>Radiologist reporting chest X-ray</td>
<td>32</td>
</tr>
<tr>
<td>Radiographer reporting chest X-ray</td>
<td>29</td>
</tr>
<tr>
<td>A&E treatment</td>
<td>141</td>
</tr>
</tbody>
</table>

Table 2. Cost of activities

ICER

ICER = £15,604 / 3.69 QALYs = £4,229 per QALY