The Cost-Effectiveness of Early Awareness in Lung Cancer Campaigns

Sebastian Hinde¹, Claire McKenna¹, Sophie Whyte², Mick Peake³, Matthew Callister⁴, Trevor Rogers⁵ and Mark Sculpher¹

1. Centre for Health Economics, University of York
2. School of Health and Related Research, The University of Sheffield
3. National Cancer Intelligence Network, Glenfield Hospital
4. St James's University Hospital
5. Doncaster Royal Infirmary

Contact: Sebastian.Hinde@york.ac.uk
o Policy Research Unit in Economic Evaluation of Health and Care Intervention (EEPRU) contract with the Department of Health.

o Asked to evaluate the cost effectiveness of a campaign to improve the early awareness of the signs and symptoms of lung cancer

o Focus on the impact of a shift in the distribution of stage at diagnosis of NSCLC
Analysis outline

Sections:

1. Construction and estimating of natural history model
2. Application of costs and HRQoL
3. Analysis of early awareness campaigns
4. Level of uncertainty
1. Natural history model

- Natural history model simulates the experience of patients with NSCLC

- Cohort representing all of England >30 years of age

- Transitions between health states are based on a set of probabilities informed by calibration methods

- Model cycle of one month to account for rapid disease development
1. Natural history schematic

- **no disease**
- **Pre-clinical**
 - Stage I & II
 - Stage IIIa
 - Stage IIIb & IV
- **Clinical**
 - Stage I & II
 - Stage IIIa
 - Stage IIIb & IV

Key
- Solid line - a transition that can be estimated from available data
- Dashed line - transitions that require calibration estimation
1. Calibration

- Used to inform estimates of transitions in the natural history model that are by definition unobservable.
- Our calibration makes use of clinical priors alongside observed data.
 - Annual incidence of clinical lung cancer (LUCADA)
1. Calibrated natural history

Estimated annual incidence/prevalence of pre-clinical NSCLC in England

<table>
<thead>
<tr>
<th>Age group</th>
<th>Annual incidence of new (pre-diagnosis) NSCLC</th>
<th>Prevalence of pre-diagnosis NSCLC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Stage I & II</td>
</tr>
<tr>
<td>30-54</td>
<td>2,020 (0.01)</td>
<td>5,314 (0.03)</td>
</tr>
<tr>
<td>55-59</td>
<td>2,228 (0.07)</td>
<td>5,509 (0.19)</td>
</tr>
<tr>
<td>60-64</td>
<td>3,710 (0.12)</td>
<td>11,401 (0.36)</td>
</tr>
<tr>
<td>65-69</td>
<td>3,758 (0.15)</td>
<td>13,368 (0.55)</td>
</tr>
<tr>
<td>70-74</td>
<td>3,425 (0.17)</td>
<td>14,892 (0.73)</td>
</tr>
<tr>
<td>75-79</td>
<td>2,423 (0.15)</td>
<td>13,318 (0.80)</td>
</tr>
<tr>
<td>80-84</td>
<td>1,438 (0.11)</td>
<td>10,258 (0.82)</td>
</tr>
<tr>
<td>Total</td>
<td>19,002</td>
<td>74,060</td>
</tr>
</tbody>
</table>

Estimated 79,238 undiagnosed cases in England, 93% early stage

The probability of monthly development between each disease state

Probability of leaving early stage disease is very low (2.11%/month)

Once disease develops it progresses quickly (44%/month)
2. Costs and HRQoL

- **Costs** - Fleming et al. 2008 (costs of diagnosis and treatment in hospital setting)
 - Several issues: transferability, age of data, only hospital data, only for one year after diagnosis

- **Health Related Quality of Life** – Sturza (2010)
 - Meta analysis of utility values for lung cancer
 - Applied as decrements, by age and gender, to QoL of general population
3. Early awareness campaigns

- What is the possible impact on the natural history model of a national campaign?

- Range of campaigns were considered:
 - NAEDI local projects (October 2010 and October 2011)
 - Early Intervention in Lung Cancer within Doncaster
 - Leeds Early Diagnosis of Lung Cancer Campaign
 - NAEDI pilot (from October 2011)
 - NAEDI national campaign (no results yet available)
3. NAEDI pilot - Midlands 2011

- Consider the shift in stage of disease as a result of the campaign, assuming reproducible nationally
- Difference-in-difference analysis on NAEDI pilot results
- Assume campaign impact is limited to period of funding
- Applied to the natural history model to consider cost-effectiveness

<table>
<thead>
<tr>
<th>Stage</th>
<th>NAEDI trusts (intervention)</th>
<th>non-NAEDI trusts (control)</th>
<th>Percentage change in relative size of staged population</th>
</tr>
</thead>
<tbody>
<tr>
<td>I and II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIIb & IV and unstaged</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results unpublished due to embargo
3. Cost-effectiveness results

- Base case impact of 3 month campaign
 - 325 additional QALYs at a cost of £3.9 million
 - Incremental Cost-Effectiveness Ratio (ICER)
 - £12,192 per QALY

- Threshold scenario analyses
 1. The cost of additional ‘worried well’ patients
 - Cost-ineffective if additional cost of £2.5 million (35,800 additional GP visits)
 2. The potential for cost saving though reduced emergency admissions
 - Cost neutral if £3.9 million saving (13,000 bed days)
4. Level of uncertainty

- Strengthen the natural history model
 - Potential of prevalence estimates (UKLS)
- Impact of an early awareness campaign
 - Additional data from pilot and full campaign
- Costs associated with the disease
 - Creation of micro costing framework using existing and new datasets (e.g. LUCADA, HES, SACT)
- The role of symptoms in natural history